Leisure Sciences: An Interdisciplinary Journal
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/ulsc20

Pre-Vacation Time: Blessing or Burden?
Jeroen Nawijn a, Jessica De Bloom b & Sabine Geurts b
a Academy for Tourism, NHTV Breda University of Applied Sciences, Breda, The Netherlands
b Department of Work and Organizational Psychology Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands

To cite this article: Jeroen Nawijn, Jessica De Bloom & Sabine Geurts (2013): Pre-Vacation Time: Blessing or Burden?, Leisure Sciences: An Interdisciplinary Journal, 35:1, 33-44
To link to this article: http://dx.doi.org/10.1080/01490400.2013.739875
Pre-Vacation Time: Blessing or Burden?

JEROEN NAWIJN
Academy for Tourism
NHTV Breda University of Applied Sciences
Breda, The Netherlands

JESSICA DE BLOOM
SABINE GEURTS
Department of Work and Organizational Psychology
Behavioural Science Institute
Radboud University Nijmegen
Nijmegen, The Netherlands

Vacationers generally experience higher health and well-being levels than nonvacationers. It is unclear if and how health and well-being levels of vacationers change prior to vacation and what potential determinants are. Our research questions were: (1) How do health and well-being change before vacation? (2) Which factors (i.e., vacation anticipation, pre-vacation workload, and homeload) are associated with health and well-being changes before vacation? (3) Are associations between pre-vacation work- and home-load and health and well-being changes before vacation different for men and women? In a longitudinal study, 96 Dutch workers reported their health and well-being in the two weeks prior to their winter sports vacation. Health and well-being decreased significantly from two weeks to one week prior to vacation. Anticipation did not affect health and well-being, whereas pre-vacation workload lowered health and well-being. Pre-vacation homeload was also associated with a decline in pre-vacation health and well-being but only for women.

Keywords anticipation, gender, health, holiday trip, homeload, leisure travel, well-being, workload

Introduction

In general, vacation has positive effects on health and well-being (De Bloom et al., 2009; Mitas, Yarnal, Adams, & Ram, 2012; Nawijn, Marchand, Veenhoven, & Vingerhoets, 2010). Positive health and well-being changes have particularly been observed during vacation (De Bloom, Geurts, & Kompier, 2012, in press; Mitas et al., 2012; Nawijn, 2011a; Nawijn, Mitas, Lin, & Kerstetter, in press) and occasionally even some time after returning home and resuming work (De Bloom et al., in press; De Bloom et al., 2011; Nawijn et al., 2010). Several studies found increased posttrip levels of life satisfaction (Gilbert & Abdullah, 2004; Lounsbury & Hoopes, 1986), sleep quality (Strauss-Blasche, Ekmekcioglu, & Marktl, 2000), mood (Gilbert & Abdullah, 2004; Nawijn et al., 2010; Strauss-Blasche et al., 2000),
and job involvement (Kühnel & Sonnentag, 2011; Lounsbury & Hoopes, 1986). In addition, researchers have found posttrip declines in job stress (Westman & Etzion, 2001, 2002), physical complaints (Strauss-Blasche et al., 2000), and burnout (Kühnel & Sonnentag, 2011; Westman & Eden, 1997; Westman & Etzion, 2001, 2002). Although vacation seems to have a positive effect on posttrip health and well-being, high work demands after vacation may eliminate these positive effects and speed up the fade-out process (Kühnel & Sonnentag, 2011; Strauss-Blasche, Ekmekcioglu, & Marktl, 2002).

Studies on health and well-being prior to vacation are scarce. Theoretical and empirical evidence points toward three major factors which may affect health and well-being in the pretrip phase: (1) anticipation of the upcoming trip, (2) stress through workload and homeload, and (3) possible gender differences in workload and homeload. Homeload refers to tasks at home such as cleaning. Given the lack of research on health and well-being prior to vacation, the purpose of our study is to determine levels of health and well-being change and potential determinants. Below, we begin with a discussion about three potential determinants on health and well-being in the pretrip phase.

Literature Review

Vacation Anticipation

Research showed that positive expectations of a future event predict high work effort and performance (Oettingen & Mayer, 2002). Similarly, research on the “rosy view” phenomenon suggests that an anticipated vacation may have a strong positive impact on one’s well-being, presumably even stronger than the actual experience itself or posttrip memories (Mitchell, Thompson, Peterson, & Cronk, 1997). Two cross-sectional studies that compared levels of subjective well-being of nonvacationers and vacationers before going on holiday showed that vacationers were somewhat happier than nonvacationers (Gilbert & Abdullah, 2002; Nawijn et al., 2010). It may be that vacationers were looking forward to their vacations (i.e., pre-vacation pleasure), which induced higher levels of subjective well-being prior to their vacations.

Pre-vacation Work- and Home-load

It is plausible that pre-vacation work demands are somewhat higher than demands during regular working periods, creating higher levels of stress and decreasing health and well-being. The pre-vacation period may be characterized by job stress due to the urge of finishing work tasks in time (DeFrank, Konopaske, & Ivancevich, 2000). Additionally, Westman (2005) claims that pre-vacation activities such as planning the vacation, traveling to the holiday destination, and coordinating work tasks for the period of absence may cause pre-vacation stress. The first and, as far as we know, only researchers who longitudinally investigated well-being of employees in the period before vacation were Westman and Eden (1997). They found no significant increase in burnout complaints from six weeks before vacation to three days before vacation. They argued that vacationers probably were looking forward to their holiday trip but simultaneously were also experiencing work overload and preparation stress.

Next to workload, future vacationers may also experience rising levels of homeload before their holiday (Westman, 2005). Homeload may arise from feeling pressure to finish tasks at home before vacation (e.g., tidying up, arranging care for pets, packing one’s suitcases). This may negatively impact health and well-being prior to vacation.
Gender Differences in Pre-vacation Work- and Home-load

Levine et al. (2001) demonstrated that whereas women are often faced with load at work and at home, men work more often out of home and experience primarily workload. In their study, the total burden of workload and homeload among women exceeded that of men by almost three hours per day, resulting in less leisure time for women. Another study also found more work–family interference in women (Brotheridge & Lee, 2005). Accordingly, women may experience more stress (i.e., homeload and workload) prior to vacation, which may manifest in lower pre-vacation levels of health and well-being.

Research Questions

In light of the limited number of studies that studied health and well-being prior to a holiday trip, there is a definite need for a longitudinal study that investigates this phase. It is particularly relevant to study the potential effect of the three aforementioned factors on health and well-being in the pretrip phase.

Accordingly, our three research questions (RQ) were:

RQ1. How do health and well-being change before vacation?
RQ2. Which factors (i.e., vacation anticipation, pre-vacation workload, and homeload) are associated with health and well-being changes before vacation?
RQ3. Are associations between pre-vacation work- and home-load and health and well-being-changes before vacation different for men and women?

Method

Data Collection Procedures

This study was part of a longitudinal field study on winter sports vacations; the data collection phase covered seven weeks in 2008 (De Bloom et al., 2011; De Bloom et al., 2010). We define a “vacation” as a holiday trip for leisure purposes that includes at least one night stay elsewhere (UNWTO, 1995). Participants’ winter sport vacations usually covered one week, and vacationers had no more than one or two days off work before departure and after return. Vacation duration (i.e., length of stay) and the time before and after vacation were therefore comparable for all vacationers. In this paper, we will solely focus on health and well-being and their (potential) determinants prior to vacation.

The study took place between February 15 and April 15, 2008. In addition to a general questionnaire, the participants received an email with a link to a digital diary twice a week, two weeks before vacation (Pre1) and in the last week before departure (Pre2). Participants were requested to complete the diary just before bedtime on a working day. To ensure that participants would not forget to complete the digital diary in the evening, they additionally received a text message reminder on their cell phone earlier that day.

After data collection, respondents were given the opportunity to comment on the research procedure. In order to reduce missing data, a lottery prize was announced with higher chances of winning for participants who returned all questionnaires.

Participants

Participants were recruited in the Netherlands via travel agencies, winter sports websites, and ski shops. In addition, ads were placed in winter sports journals and newspapers, a winter sports fair was visited, and sport clubs were contacted. Initially, 176 persons indicated to be interested in taking part in the study. After having administered detailed information about
the research procedure and screening for several prerequisites for participation (for details see De Bloom et al., 2010), 96 vacationers actually took part in the study, resulting in a 55% response rate. Considering the four measurements per individual, 90 respondents replied to all four single measurements. Based on a maximum of 384 possible single measurements in this study (four measurements in 96 persons), the overall completion rate was 94% (360 measurements).

A paper-pencil questionnaire, sent to the participants before the diary study began, revealed that the majority of the sample was male (65%) and the mean age was 44 years (SD = 10). More than half of the respondents were married and lived with at least one child (57%), 29% of the respondents were married and lived without children, 9% were unmarried and lived alone, 2% were single parents, and 2% lived in their parents’ house. The educational level was distributed as follows: 5% of the sample had “lower” education (no, lower secondary or junior secondary education), 40% had completed “medium” levels of education (senior general secondary and university preparation education), and 55% had achieved “higher” educational levels (higher professional and higher education). Participants worked in a variety of industries: 23% worked in the commercial sector, 20% were higher educated specialists (e.g., engineers, ICT-workers), 14% worked in the service sector, 12% in health care, 11% were administrative employees, 7% were craftsmen or worked in the production industry, 4% were teachers, and the remaining 9% worked in other sectors.

Average weekly work hours were 38 (SD = 7.73). The total number of weekly work hours (including overtime) varied from 24 to 60 hours. Men worked more hours (M = 41, SD = 6.83) than did women (M = 34, SD = 7.48). Women spent four hours on average on daily care and household tasks (SD = 3.12), while men spent three hours on average (SD = 1.81). The mean length of stay on vacation was nine days (SD = 1.81, range: 7–19 days).

Because participants were members of the working population, sample characteristics differed slightly from the nation’s general population (CBS, 2012). For instance, approximately 40% of the Dutch are married, whereas the percentage in our sample was 86%. Gender division is rather equal in the Netherlands, while our working sample contained more men.

Measures

We assessed all constructs four times before vacation: twice during the second last week before vacation and twice in the last week before vacation. The two within-week measurements were averaged to obtain a reliable week-indicator for the whole week and to prevent missing data (i.e., in case of a single non-answered prompt, the other measurement in the same week was treated as the week-average).

Health and well-being. We incorporated six different health and well-being indicators: health status, mood, fatigue, tension, energy level, and satisfaction. To minimize nonresponse and maximize user friendliness, we reduced the number of questions as much as possible. We used response scales that were based on the well-known basic Dutch grade notation system ranging from 1 (extremely low/negative) to 10 (extremely high/positive) and anchored the first and the last grade. The exact wording of each single-item measure and the anchors can be found in Table 1. We included the six health and well-being indicators in an exploratory factor analysis with varimax rotation to observe whether the indicators measured one underlying construct. We did this for both time periods (Pre1 and Pre2). Both factor analyses resulted in a one-factor solution with an Eigenvalue greater than 1 and factor loadings ≥ .50. Therefore, on each measurement occasion we combined the six health and well-being indicators into one overall health and well-being construct. Cronbach’s alphas of health and well-being were .84 in the second last week before vacation (Pre1) and .82
TABLE 1 Description of the Six Single-item Measures of Health and Well-being Used in this Study

<table>
<thead>
<tr>
<th>H&W indicator</th>
<th>Single item measure</th>
<th>1 means . . .</th>
<th>10 means . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health status</td>
<td>How healthy did you feel today?</td>
<td>Very unhealthy</td>
<td>Very healthy</td>
</tr>
<tr>
<td>Mood</td>
<td>How was your mood today?</td>
<td>Very bad</td>
<td>Very good</td>
</tr>
<tr>
<td>Fatigue</td>
<td>How fatigued did you feel today?</td>
<td>Not fatigued at all</td>
<td>Very fatigued</td>
</tr>
<tr>
<td>Tension</td>
<td>How tense did you feel today?</td>
<td>Very calm</td>
<td>Very tense</td>
</tr>
<tr>
<td>Energy level</td>
<td>How energetic do you currently feel?</td>
<td>Absolutely not energetic</td>
<td>Very energetic</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>How satisfied do you feel about this day?</td>
<td>Absolutely not satisfied</td>
<td>Very satisfied</td>
</tr>
</tbody>
</table>

H&W = Health and Well-being

in the last week before vacation (Pre2), indicating good internal consistency and reliability (Cronbach, 1951).

Workload. Workload was measured with 8 items from a Dutch modified version of the psychological demands scale of the Job Content Questionnaire (JCQ; Karasek et al., 1998; Karasek, Pieper, & Schwartz, 1985). A typical question is: “Did you have to work very fast today?” Participants had four answer options available: (1) no, not at all, (2) yes, sometimes, (3) yes, very often, and (4) yes, (almost) all the time. The eight questions were averaged to an overall workload score. Cronbach’s alpha was .86 in the second last week before vacation (Pre1) and .87 in the last week before vacation (Pre2), indicating good internal consistency and reliability (Cronbach, 1951).

Homeload. Participants were asked four questions about the load they experienced while executing household and care tasks. The questions were inspired by the JCQ (Karasek et al., 1998; Karasek et al., 1985) and applied to the home situation. A typical item is: “Did you have to do a lot of household and caregiving tasks today?” Identical to workload, participants had four answer options available and the composite score constituted the average of the four questions. Cronbach’s alpha was .66 in the second last week before vacation (Pre1) and .78 in the last week before vacation (Pre2), indicating acceptable internal consistency and reliability (Cronbach, 1951).

Vacation anticipation. Participants stated how much they were looking forward to their vacation on a single-item scale, ranging from 1 (not looking forward at all) to 10 (looking forward very much).

Statistical Approach

We first performed paired samples t-tests to assess (potential) changes in health and well-being (RQ 1), workload, homeload, and vacation anticipation from Pre1 to Pre2. Cohen’s *d* for paired observations (Cohen, 1988, p. 46) was used as an effect size. Following Cohen (1988), we distinguished among small (0 to 0.5), medium (0.5 to 0.8) and large (>0.8) effect sizes.

Furthermore, we assessed the potential determinants of changes in health and well-being at Pre2 (RQ2) by performing a regression analysis in which we added workload...
(Pre2), homeload (Pre2) and vacation anticipation (Pre2), controlling for the level of health and well-being at Pre1.

To answer RQ3, we included the interactions of gender∗workload (Pre2) and gender∗homeload (Pre2). We did not include an interaction effect of gender∗vacation anticipation as there is no theoretical basis to assume that women or men should experience more pleasure in looking forward to a vacation period.

To assess changes in a dependent variable from T1 to T2, it is a common and accepted procedure in longitudinal research to use the T1-level of the dependent variable as a covariate or to use change scores (Twisk, 2003). There is quite some debate among social scientists on the use of change scores. An often-cited paper by Cronbach and Furby (1979) warns against the use of change scores because they are, by definition, less reliable than one single score (as they combine the error terms of two scores). In their meta-analysis of studies on health and well-being in relation to vacationing, De Bloom et al. (2009) found no study that used change scores. However, several of the studies included in their meta-analysis and studies published after their meta-analysis was published used an approach that included the use of covariates at T2 (e.g., De Bloom et al., 2012; De Bloom et al., 2011; Fritz & Sonnentag, 2006; Hoopes & Lounsbury, 1989; Lounsbury & Hoopes, 1986). For these reasons, we used an approach that is in line with such analyses. We chose to use a Stepwise approach as it allows us to specify potential gender effects.

Results

Table 2 shows means, standard deviations, potential range, actual range, and zero-order Pearson correlations between the study variables. The measurement level of gender is not interval, but correlations are provided as they show potential different gender effects on the (potential) health and well-being determinants.

As expected, health and well-being (Pre1) and health and well-being (Pre2) correlated strongly \((r = .79, p < .05)\). Similarly, workload (Pre1) and workload (Pre2), as well as homeload (Pre1) and homeload (Pre2), were strongly interrelated \((r = .58, p < .05 \text{ for workload and } r = .45, p < .05 \text{ for homeload})\) and related to health and well-being on both measurement occasions \((r \text{ varied from } - .24 \text{ to } - .42, p < .05)\). Contrary to expectations, vacation anticipation on Pre1 and Pre2 was not related to health and well-being on Pre 1 or Pre2. The reason for this could be the high mean levels of vacation anticipation (9.2 and

TABLE 2 Means, Standard Deviations, Ranges and Zero-Order Correlations Between Study Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>(M)</th>
<th>(SD)</th>
<th>Range</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) H&W Pre1</td>
<td>7.0</td>
<td>1.2</td>
<td>1–10</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) H&W Pre2</td>
<td>6.8</td>
<td>1.1</td>
<td>1–10</td>
<td>.79*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Gender</td>
<td>0.4</td>
<td>0.5</td>
<td>0–1</td>
<td>-.30*-.41*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Workload Pre1</td>
<td>2.0</td>
<td>0.5</td>
<td>1–4</td>
<td>-.24*-.34*</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Workload Pre2</td>
<td>2.0</td>
<td>0.5</td>
<td>1–4</td>
<td>-.26*-.42*</td>
<td>.22*</td>
<td>.58*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Homeload Pre1</td>
<td>1.5</td>
<td>0.4</td>
<td>1–4</td>
<td>-.32*-.30*</td>
<td>.14</td>
<td>.20*</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Homeload Pre2</td>
<td>1.6</td>
<td>0.5</td>
<td>1–4</td>
<td>-.42*-.42*</td>
<td>.28*</td>
<td>.26*</td>
<td>.24*</td>
<td>.45*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Vac. ant. Pre1</td>
<td>9.2</td>
<td>1.1</td>
<td>1–10</td>
<td>-.01</td>
<td>-.03</td>
<td>-.08</td>
<td>.02</td>
<td>.01</td>
<td>.04</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) Vac. ant. Pre2</td>
<td>9.0</td>
<td>1.2</td>
<td>1–10</td>
<td>-.11</td>
<td>-.06</td>
<td>-.04</td>
<td>.12</td>
<td>.10</td>
<td>.20</td>
<td>.19</td>
<td>.78*</td>
<td></td>
</tr>
</tbody>
</table>

*Note. *\(p < .05\). Gender 0 = male, 1 = female. H&W = Health and Well-being. Vac. ant. = Vacation Anticipation.
Pre-Vacation Time

An overview of the paired samples t-tests and effect sizes for health and well-being, workload, homeload, and vacation anticipation on both measurement occasions before vacation is presented in Table 3.

The results showed that participants’ health and well-being decreased significantly from Pre1 to Pre2 ($d = -0.38$; small effect). This indicates that our answer to RQ1 is that health and well-being indeed changed before vacation, and that this change concerns a decrease in health and well-being. The results further showed that the level of the other study variables did not change significantly before vacation.

To answer RQ2, we performed a regression analysis of health and well-being at Pre2 (see Table 4). We entered health and well-being (Pre1) in the first step, to control for the level of health and well-being on Pre1. In the following step, we added workload (Pre2), homeload (Pre2), and vacation anticipation (Pre2). In the final step, we included the interactions of gender * workload (Pre2) and gender * homeload (Pre2).

The model as a whole was significant and the total variance explained in health and well-being (Pre2) was 70%, $F (3, 89) = 67.851$, $p < .001$. As expected (and considering the correlation of .79), health and well-being (Pre1) explained a great deal (63%) of the variance in health and well-being (Pre2). The three potential determinants explained together an additional 5% of the variance in health and well-being (Pre2). Hereby, only
workload (Pre2) significantly contributed to the variance explained ($\beta = -0.20$, $p < 0.01$), indicating that the decrease in health and well-being from Pre1 to Pre2 was explained by higher workload on Pre2.

Homeload (Pre2) and vacation anticipation (Pre2) were not associated with the decrement in health and well-being.

Regarding our RQ3, the interaction of gender and workload (Pre2) was not significantly related to changes in health and well-being before vacation. However, the gender*homeload (Pre2) interaction was significant ($\beta = -0.17$, $p < 0.05$), indicating that homeload before vacation (Pre2) was associated with a decrement in health and well-being from Pre1 to Pre2 but only for women.

Discussion and Conclusion

The aims of this study were to assess potential changes in health and well-being prior to vacation (RQ1); to determine the extent to which these health and well-being changes were associated with workload, homeload, and vacation anticipation (RQ2); and to assess whether these associations were different for men and women (RQ3). Our results showed that pre-vacation time is more of a burden than a blessing. Health and well-being decreased from the second last week before vacation to the last week before vacation ($d = -0.38$). Our results further demonstrated that the decrease in health and well-being prior to vacation was explained by higher workload before vacation. In addition, homeload before vacation explained the decrease in health and well-being prior to vacation but only for women.

Thus, while health and well-being in both genders decreased prior to vacation, women’s double burden of workload and homeload prior to vacation particularly affected their health and well-being. Our findings suggest that women experience more work interference than men, as suggested by Brotheridge and Lee (2005). This particularly negative effect for women is also in line with findings by Westman and Eden (1997), who found that posttrip vacation effects on burnout differ for men and women, with women experiencing a quicker fade-out of positive effects than men do.

Vacation anticipation was generally high but had no significant effect on health and well-being in the week prior to a holiday trip. Although restriction of range may partly explain the absence of a relationship between health and well-being and vacation anticipation, it is not unlikely that pre-vacation health and well-being are more strongly affected by pre-vacation stress than by the pleasure of looking forward to a holiday period.

Methodologically, the results of our study shine new light on previous studies which have assessed post-vacation effects and used a pre-trip well-being baseline close to the vacation (e.g., Milman, 1998; Steyn, Saayman, & Nienaber, 2004). As health and well-being seem to decrease shortly before vacation, the pre-vacation baseline of these earlier studies may be too low, leading to an overestimation of the vacation effect and the effects after vacation. Accordingly, our findings underscore the suggestion of De Bloom et al. (2010) to apply a baseline reasonably long before vacation.

Mannell (2007) distinguished five themes in literature on health and well-being and leisure. These themes can be regarded as motives to participate in leisure, consequently affecting health and well-being. These motives are coping with stress, hedonic pleasure, keeping idle hands busy, identity formation and affirmation, and personal growth. Earlier studies indeed found that vacation can be regarded as a tool to cope with stress (cf., De Bloom et al., 2010; Westman & Etzion, 2001). Several studies also suggested that vacation travel provides hedonic pleasure (De Bloom et al., 2012; Nawijn, 2011a; Nawijn et al., 2010). “Keeping idle hands busy” has, as far as the authors are aware, never been investigated.
or observed in a tourism motivational study. Studies on identity formation and affirmation in leisure travel research are scarce and mostly linked to destination identity (Richards & Palmer, 2010). Pearce and Lee’s (2005) travel career ladder concept is an exception to this rule, but identity formation and affirmation through leisure travel and its effect on health and well-being has not been tested empirically as yet. Finally, the average leisure trip seems not often used for personal growth, although the opportunity is there to work on personal goals through development of competencies (Sirgy, 2010). In light of Mannell’s (2007) five motives, our findings support the motive of coping with stress, as workload and homeload turned out to have a negative effect on health and well-being prior to vacation.

Implications

The findings of the present study have several implications. From an individual’s point of view, our study emphasized that a vacation may not have merely positive effects. Although posttrip effects seem to be mostly neutral or positive (De Bloom et al., 2010; De Bloom et al., 2009; Nawijn et al., 2010), our study demonstrated that pretrip effects on health and well-being are mostly negative. This implies that employees, especially female employees, should try to prevent high workload and homeload prior to vacation as much as possible in order to preserve health and well-being.

Decreasing health and well-being levels before vacation also raise the question whether a vacation is really “worth all the trouble.” What is the overall net effect on one’s health and well-being? When we compare the decrement in health and well-being before this winter sports vacation ($d = -0.38$) with the improvement in health and well-being ($d = .55$) during this winter sports vacation, as reported earlier by De Bloom et al. (2011) based on the same sample, we can answer this question: Yes, a vacation is worth it because the net gain is still positive.

Limitations and Suggestions for Future Research

First, the measure we used for vacation anticipation consisted of a single item. The reason for doing so is that we wanted to keep the length of the questionnaire as short as possible in order to prevent non-completion. Although single-item scales have high face validity, multi-item scales are generally preferred as they tend to measure theoretical constructs better than single-item scales do. Future studies might consider using the Savoring Beliefs Inventory subscale for anticipation (Bryant, 2003).

Second, the time span we investigated was relatively short: two weeks. It may be possible that even during the second last week before vacation, workload or homeload had already increased and health and well-being had already decreased due to the upcoming vacation. This would underestimate the true effect of an upcoming vacation. Moreover, the first measurement occasions of this study may also have been biased by certain kinds of reactance. That is, the first times that participants filled in the questionnaires might have been be more interesting to them than later measurement occasions, which may have influenced their mood. Measuring health and well-being over a longer time period prior to vacation and repeatedly in the last days before vacation would be a valuable addition to this study.

Third, the findings of the present study addressed only a certain type of holiday trip, which took place during a certain time of year and in a rather sports-loving sample. Potentially different effects on health and well-being may have occurred when assessing different types of trips, which vary in length of stay (especially long vacations), season (e.g., stressful periods or more relaxed periods of the working year) purpose (e.g., wellness trips), and stage of life (e.g., working, retired).
Fourth, we used rather general health and well-being measures. Future studies could include indicators of subjective well-being that have been used in earlier studies (e.g., Gilbert & Abdullah, 2004; Nawijn, 2011a, 2011b; Sirgy, Kruger, Lee, & Yu, 2011). More specifically, cognitive indicators of subjective well-being (contentment; see Veenhoven, 1984) could be used to assess how leisure goals through project-based leisure (e.g., become more skilled as a runner) or serious leisure (e.g., volunteer work or a hobby; Stebbins, 2001) may interfere with work goals. More affective indicators of subjective well-being are useful too. For instance, the circumplex model of affect (Russell, 1980) has been used recently in a study on subjective well-being in organizations (Bakker & Oerlemans, 2011). It would be reasonable to expand such studies by addressing the relation between leisure and work. Using measures that correspond with measures in other studies would allow for a better comparison of the findings.

Finally, as our focus was on a population of workers, our sample was somewhat specific in terms of its demographics and not necessarily representative of the Dutch general population (see CBS, 2012). Future studies could concentrate on a wider sample, for example, nonworkers. As our study centered only on Dutch participants, this study’s findings should be replicated in other nations as well.

References

